Search results
Results from the WOW.Com Content Network
v. t. e. Canonical commutation rule for position q and momentum p variables of a particle, 1927. pq − qp = h / (2 πi). Uncertainty principle of Heisenberg, 1927. The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with ...
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...
This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.
In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real -valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be ...
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).
In quantum mechanics, conjugate variables are realized as pairs of observables whose operators do not commute. In conventional terminology, they are said to be incompatible observables . Consider, as an example, the measurable quantities given by position ( x ) {\displaystyle \left(x\right)} and momentum ( p ) {\displaystyle \left(p\right)} .
Scientists. v. t. e. In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum ...