enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Independently of Bayes, Pierre-Simon Laplace used conditional probability to formulate the relation of an updated posterior probability from a prior probability, given evidence. He reproduced and extended Bayes's results in 1774, apparently unaware of Bayes's work, in 1774, and summarized his results in Théorie analytique des probabilités (1812).

  3. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data.

  4. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  5. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. [3] [4] For example, in Bayesian inference, Bayes' theorem can be ...

  6. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  7. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. [1]

  8. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    The need to determine the prior probability distribution taking into account the available (prior) information. The sequential use of Bayes' theorem: as more data become available, calculate the posterior distribution using Bayes' theorem; subsequently, the posterior distribution becomes the next prior.

  9. Base rate - Wikipedia

    en.wikipedia.org/wiki/Base_rate

    In Bayesian analysis, the base rate is combined with the observed data to update our belief about the probability of the characteristic or trait of interest. The updated probability is known as the posterior probability and is denoted as P(A|B), where B represents the observed data. For example, suppose we are interested in estimating the ...