Search results
Results from the WOW.Com Content Network
Superplasticizers (SPs), also known as high range water reducers, are additives used for making high-strength concrete or to place self-compacting concrete. Plasticizers are chemical compounds enabling the production of concrete with approximately 15% less water content. Superplasticizers allow reduction in water content by 30% or more.
These inexpensive products were derived from wood and paper industry, but are now advantageously replaced by other synthetic sulfonate and polycarboxylate, also known as superplasticizers. Water reducers offer several advantages in their use, listed below: reduces the water content by 5-10%; decreases the concrete porosity
However, most HPFRCCs include at least the following ingredients: fine aggregates, a superplasticizer, polymeric or metallic fibers, cement, and water. Thus the principal difference between HPFRCC and typical concrete composition lies in HPFRCCs' lack of coarse aggregates. Typically, a fine aggregate such as silica sand is used in HPFRCCs.
PVC, used extensively in sewage pipes, is only useful because of plasticizers. [1]A plasticizer (UK: plasticiser) is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture.
The structural integrity of CLASP buildings are strong and robust, the design being based on; strong concrete foundations, metal framing supports and concrete cladding give the building a unlimited lifetime timeframe (with small maintenance carried out). It is these design fundamentals of CLASP that can allow buildings to last over a hundred years.
Example of flat piece of concrete having dislodged with corroded rebar underneath, Welland River bridge across Queen Elizabeth Way in Niagara Falls, Ontario. The expansion of the corrosion products (iron oxides) of carbon steel reinforcement structures may induce internal mechanical stress (tensile stress) that cause the formation of cracks and disrupt the concrete structure.
Hydrophobic concrete can be used in the same applications as regular concrete, most often where regular concrete is dangerous to repair or the cost of structural damage would be highly detrimental. Tunnel work is a major application of hydrophobic concrete as underground repairs are difficult and costly. [ 8 ]
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]