Search results
Results from the WOW.Com Content Network
The number indicates the degree of oxidation of each element caused by molecular bonding. In ionic compounds, the oxidation numbers are the same as the element's ionic charge. Thus for KCl, potassium is assigned +1 and chlorine is assigned -1. [4] The complete set of rules for assigning oxidation numbers are discussed in the following sections.
Element Negative states Positive states Group Notes −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Z; 1 hydrogen: H −1 +1: 1 2 helium: He 0 18
In the NO − 3 anion, the oxidation state of the central nitrogen atom is V (+5). This corresponds to the highest possible oxidation number of nitrogen. Nitrate is a potentially powerful oxidizer as evidenced by its explosive behaviour at high temperature when it is detonated in ammonium nitrate (NH 4 NO 3), or black powder, ignited by the shock wave of a primary explosive.
NO y is the class of compounds comprising NO x and the NO z compounds produced from the oxidation of NO x which include nitric acid, nitrous acid (HONO), dinitrogen pentoxide (N 2 O 5), peroxyacetyl nitrate (PAN), alkyl nitrates (RONO 2), peroxyalkyl nitrates (ROONO 2), the nitrate radical (NO 3), and peroxynitric acid (HNO 4).
[1] [2] NO y (or NOy) refers to the sum of NO x and all oxidized atmospheric odd-nitrogen species (e.g. the sum of NO x, HNO 3, HNO 2, etc.) NO z (or NOz) = NO y − NO x; Mixed Oxides of Nitrogen ("MON"): solutions of nitric oxide in dinitrogen tetroxide/nitrogen dioxide.
In the "Stock system", the oxidation states of some or all of the elements in a compound are indicated in parentheses by Roman numerals. [1] [2] Style
Nitrogen trioxide or nitrate radical is an oxide of nitrogen with formula NO 3, consisting of three oxygen atoms covalently bound to a nitrogen atom. This highly unstable blue compound has not been isolated in pure form, but can be generated and observed as a short-lived component of gas, liquid, or solid systems.
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]