Search results
Results from the WOW.Com Content Network
Dual control theory is a branch of control theory that deals with the control of systems whose characteristics are initially unknown. [1] [2] It is called dual because in controlling such a system the controller's objectives are twofold: (1) Action: To control the system as well as possible based on current system knowledge
Two-component systems accomplish signal transduction through the phosphorylation of a response regulator (RR) by a histidine kinase (HK). Histidine kinases are typically homodimeric transmembrane proteins containing a histidine phosphotransfer domain and an ATP binding domain, though there are reported examples of histidine kinases in the atypical HWE and HisKA2 families that are not ...
A series of biochemical switches control transitions between and within the various phases of the cell cycle.The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases.
Regulation of biological processes occurs when any process is modulated in its frequency, rate or extent. Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule.
In molecular biology, a reporter gene (often simply reporter) is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the characteristics they confer on organisms expressing them are easily identified and measured, or because ...
Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. [1]
A biochemical cascade, also known as a signaling cascade or signaling pathway, is a series of chemical reactions that occur within a biological cell when initiated by a stimulus.
All homeostatic control mechanisms have at least three interdependent components for the variable being regulated: a receptor, a control center, and an effector. [3] The receptor is the sensing component that monitors and responds to changes in the environment, either external or internal. Receptors include thermoreceptors and mechanoreceptors.