Search results
Results from the WOW.Com Content Network
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]
Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water). This approximation breaks down as the solute concentration is increased (for example, in water–NaCl mixtures). High solute concentrations ...
The Imperial gallon was based on the concept that an Imperial fluid ounce of water would have a mass of one Avoirdupois ounce, and indeed 1 g/cm 3 ≈ 1.00224129 ounces per Imperial fluid ounce = 10.0224129 pounds per Imperial gallon.
This measurement approach fails with a buoyant submerged object because the rise in the water level is directly related to the volume of the object and not the mass (except if the effective density of the object equals exactly the fluid density). [8] [9] [10]
Since 1 liter of water weighs 1 kilogram (at 4 °C), it follows that the volume of the block is 1 liter and the density (mass/volume) of the stone is 3 kilograms/liter. Example 2: Consider a larger block of the same stone material as in Example 1 but with a 1-liter cavity inside of the same amount of stone.
Blood accounts for 7% of the human body weight, [9] [10] with an average density around 1060 kg/m 3, very close to pure water's density of 1000 kg/m 3. [11] The average adult has a blood volume of roughly 5 litres (11 US pt) or 1.3 gallons, [ 10 ] which is composed of plasma and formed elements .
After all, water (not Gatorade) is what most of the body is made of. Up Next: Related: 11 Tasty Low-Calorie Drinks to Keep You Hydrated if Water's Just Not Your Thing
The condition to get a partially ideal solution on mixing is that the volume of the resulting mixture V to equal double the volume V s of each solution mixed in equal volumes due to the additivity of volumes. The resulting volume can be found from the mass balance equation involving densities of the mixed and resulting solutions and equalising ...