Search results
Results from the WOW.Com Content Network
One has a hyperboloid of revolution if and only if =. Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid.
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v.
The Weierstrass coordinates of a point are the Cartesian coordinates of the point when the point is mapped in the hyperboloid model of the hyperbolic plane, the x-axis is mapped to the (half) hyperbola ( , , +) and the origin is mapped to the point (0,0,1). [1]
The isometry to the previous models can be realised by stereographic projection from the hyperboloid to the plane {+ =}, taking the vertex from which to project to be (, …,,) for the ball and a point at infinity in the cone () = inside projective space for the half-space.
One can take the hyperboloid to represent the events (positions in spacetime) that various inertially moving observers, starting from a common event, will reach in a fixed proper time. The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers.
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
In geometry and linear algebra, a principal axis is a certain line in a Euclidean space associated with a ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse or hyperbola. The principal axis theorem states that the principal axes are perpendicular, and gives a constructive procedure for finding them.