Search results
Results from the WOW.Com Content Network
If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]
S is the node stack, which starts out empty and stores the history of nodes explored but not yet committed to a strongly connected component. This is not the normal depth-first search stack, as nodes are not popped as the search returns up the tree; they are only popped when an entire strongly connected component has been found.
Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.
As a tree is a self-referential (recursively defined) data structure, traversal can be defined by recursion or, more subtly, corecursion, in a natural and clear fashion; in these cases the deferred nodes are stored implicitly in the call stack. Depth-first search is easily implemented via a stack, including recursively (via the call stack ...
Since IDDFS, at any point, is engaged in a depth-first search, it need only store a stack of nodes which represents the branch of the tree it is expanding. Since it finds a solution of optimal length, the maximum depth of this stack is d {\displaystyle d} , and hence the maximum amount of space is O ( d ) {\displaystyle O(d)} .
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
The depth is standard to maintain during a depth-first search. The lowpoint of v can be computed after visiting all descendants of v (i.e., just before v gets popped off the depth-first-search stack ) as the minimum of the depth of v , the depth of all neighbors of v (other than the parent of v in the depth-first-search tree) and the lowpoint ...