Search results
Results from the WOW.Com Content Network
The perpendicular axis theorem (or plane figure theorem) states that for a planar lamina the moment of inertia about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia about two mutually perpendicular axes in the plane of the lamina, which intersect at the point where the perpendicular axis passes through.
A point mass does not have a moment of inertia around its own axis, but using the parallel axis theorem a moment of inertia around a distant axis of rotation is achieved. Two point masses, m 1 and m 2 , with reduced mass μ and separated by a distance x , about an axis passing through the center of mass of the system and perpendicular to the ...
Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units. The moment of inertia plays the role in rotational kinetics that mass (inertia) plays in linear kinetics—both characterize the resistance of a body to changes in its motion. The ...
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...
In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]
An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where
The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia. It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree.