enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  3. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    Euclid's proofs are essentially correct, but strictly speaking sometimes contain gaps because he tacitly uses some unstated assumptions, such as the existence of intersection points. In 1899 David Hilbert gave a complete set of ( second order ) axioms for Euclidean geometry, called Hilbert's axioms , and between 1926 and 1959 Tarski gave some ...

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  5. Giovanni Girolamo Saccheri - Wikipedia

    en.wikipedia.org/wiki/Giovanni_Girolamo_Saccheri

    Since Euclid's postulate is equivalent to the statement that the sum of the internal angles of a triangle is 180°, he considered both the hypothesis that the angles add up to more or less than 180°. The first led to the conclusion that straight lines are finite, contradicting Euclid's second postulate. So Saccheri correctly rejected it.

  6. Saccheri quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Saccheri_Quadrilateral

    Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.

  7. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Historically, Euclid's parallel postulate has turned out to be independent of the other axioms. Simply discarding it gives absolute geometry , while negating it yields hyperbolic geometry . Other consistent axiom sets can yield other geometries, such as projective , elliptic , spherical or affine geometry.

  8. Axiom independence - Wikipedia

    en.wikipedia.org/wiki/Axiom_independence

    An axiom P is independent if there are no other axioms Q such that Q implies P. . In many cases independence is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of other axioms of Euclidean geometry, and provides interesting results when negated ...

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these. Although many of Euclid's results had been stated by earlier mathematicians, [7] Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. [8]