enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...

  3. Energy gap - Wikipedia

    en.wikipedia.org/wiki/Energy_gap

    For superconductors the energy gap is a region of suppressed density of states around the Fermi energy, with the size of the energy gap much smaller than the energy scale of the band structure. The superconducting energy gap is a key aspect in the theoretical description of superconductivity and thus features prominently in BCS theory.

  4. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    Energy band gaps can be classified using the wavevectors of the states surrounding the band gap: Direct band gap: the lowest-energy state above the band gap has the same k as the highest-energy state beneath the band gap. Indirect band gap: the closest states above and beneath the band gap do not have the same k value.

  5. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In semiconductors and insulators the two bands are separated by a band gap, while in conductors the bands overlap. A band gap is an energy range in a solid where no electron states can exist due to the quantization of energy. Within the concept of bands, the energy gap between the valence band and the conduction band is the band gap. [1]

  6. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...

  7. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.

  8. Band-gap engineering - Wikipedia

    en.wikipedia.org/wiki/Band-gap_engineering

    A band gap is the range in a solid where no electron state can exist. The band gap of insulators is much larger than in semiconductors. Conductors or metals have a much smaller or nonexistent band gap than semiconductors since the valence and conduction bands overlap. Controlling the band gap allows for the creation of desirable electrical ...

  9. Band offset - Wikipedia

    en.wikipedia.org/wiki/Band_offset

    The band gap difference ΔEg = Eg(A) - Eg(B) is distributed between the two discontinuities,ΔEv, and ΔEc$. In alignments, it is generally the case that the conduction band which has the higher energy minimum will bend upward, whilst the valence band which has the lower energy maximum will bend upward.