enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    Lagrange's four-square theorem, also known as Bachet's conjecture, states that every nonnegative integer can be represented as a sum of four non-negative integer squares. [1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 can be represented as the sum of four ...

  3. 24 (puzzle) - Wikipedia

    en.wikipedia.org/wiki/24_(puzzle)

    24 (puzzle) The 24 puzzle is an arithmetical puzzle in which the objective is to find a way to manipulate four integers so that the end result is 24. For example, for the numbers 4, 7, 8, 8, a possible solution is . Note that all four numbers must be used exactly once. The problem has been played as a card game in Shanghai since the 1960s, [1 ...

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    The sum of the ones digit, double the tens digit, four times the hundreds digit, and eight times the thousands digit is divisible by 16. 157,648: 7 × 8 + 6 × 4 + 4 × 2 + 8 = 96 17: Subtract 5 times the last digit from the rest. (Works because 51 is divisible by 17.) 221: 22 − 1 × 5 = 17. Add 12 times the last digit to the rest.

  5. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    t. e. In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.

  7. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python is a multi-paradigm programming language. Object-oriented programming and structured programming are fully supported, and many of their features support functional programming and aspect-oriented programming (including metaprogramming [73] and metaobjects). [74] Many other paradigms are supported via extensions, including design by ...

  8. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  9. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    In the following examples it is best not to use the polynomial representation, as the meaning of x changes between the examples. The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0.