enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined. If f(x) is the function in Example 1 and F is its antiderivative, and {} is a dense countable subset of the open interval (,), then the function = = has an antiderivative = = ().

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    Calculus. In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integralx dy may be calculated as above from knowing the integral ∫ y dx.

  5. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    (Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !

  6. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    Integral of the Gaussian function, equal to sqrt (π) A graph of the function and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl ...

  7. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    t. e. In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one.

  8. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. [1][2][3] Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are ...

  9. Monte Carlo integration - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_integration

    An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.