Search results
Results from the WOW.Com Content Network
A graph of the function and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is.
t. e. In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics ...
A sigmoid function refers specifically to a function whose graph follows the logistic function. It is defined by the formula: σ {\displaystyle \sigma (x)= {\frac {1} {1+e^ {-x}}}= {\frac {e^ {x}} {1+e^ {x}}}=1-\sigma (-x).} In many fields, especially in the context of artificial neural networks, the term "sigmoid function" is correctly ...
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. [1][2][3] Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are ...
Exponential integral. Plot of the exponential integral function E n (z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the exponential integral Ei is a special function on the complex plane. It is defined as one particular definite integral of the ratio between ...
Function. In mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in a plane and often form a curve. The graphical representation of the graph of a function is also known as a plot. In the case of functions of two variables ...
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).