Search results
Results from the WOW.Com Content Network
On Earth, the Rayleigh number for convection within Earth's mantle is estimated to be of order 10 7, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the core). On a global scale, surface expression of this convection is the tectonic ...
The remaining heat flow at the surface would be due to basal heating of the crust from mantle convection. Heat fluxes are negatively correlated with rock age, [1] with the highest heat fluxes from the youngest rock at mid-ocean ridge spreading centers (zones of mantle upwelling), as observed in the global map of Earth heat flow. [1]
Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 10 24 kg (8.84 × 10 24 lb) and makes up 67% of the mass of Earth. [1] It has a thickness of 2,900 kilometers (1,800 mi) [1] making up about 46% of Earth's radius and 84% of Earth's volume.
[1] This force occurs between two colliding plates where one is subducting beneath the other. As one plate subducts, it sets up convection currents in the upper mantle that exert a net trenchward pull, and acts to suck both the plates together. [2] Slab suction is weaker than slab pull, which is the strongest of the driving forces.
Forced convection: when a fluid is forced to flow over the surface by an internal source such as fans, by stirring, and pumps, creating an artificially induced convection current. [ 3 ] In many real-life applications (e.g. heat losses at solar central receivers or cooling of photovoltaic panels), natural and forced convection occur at the same ...
Convection within Earth's mantle is the driving force for plate tectonics. Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the upper mantle, and is therefore less dense. This sets up two primary types of instabilities.
The figure is a schematic diagram depicting a subduction zone. The subduction slab on the right enters the mantle with a varying temperature gradient while importing water in a downward motion. A model of the subducting Farallon slab under North America. In geology, the slab is a significant constituent of subduction zones. [1]
Here, is the thickness of the oceanic mantle lithosphere, is the thermal diffusivity (approximately 1.0 × 10 −6 m 2 /s or 6.5 × 10 −4 sq ft/min) for silicate rocks, and is the age of the given part of the lithosphere. The age is often equal to L/V, where L is the distance from the spreading centre of mid-ocean ridge, and V is velocity of ...