enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrochemical potential - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_potential

    These two examples show that an electrical potential and a chemical potential can both give the same result: A redistribution of the chemical species. Therefore, it makes sense to combine them into a single "potential", the electrochemical potential , which can directly give the net redistribution taking both into account.

  3. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    For example, in a quark–gluon plasma or other QCD matter, at every point in space there is a chemical potential for photons, a chemical potential for electrons, a chemical potential for baryon number, electric charge, and so forth.

  4. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.

  5. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    In this article, the terms conduction-band referenced Fermi level or internal chemical potential are used to refer to ζ. Example of variations in conduction band edge E C in a band diagram of GaAs/AlGaAs heterojunction-based high-electron-mobility transistor.

  6. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    An atom or ion that gives up an electron to another atom or ion has its oxidation state increase, and the recipient of the negatively charged electron has its oxidation state decrease. For example, when atomic sodium reacts with atomic chlorine, sodium donates one electron and attains an oxidation state of +1. Chlorine accepts the electron and ...

  7. Quantum capacitance - Wikipedia

    en.wikipedia.org/wiki/Quantum_capacitance

    Quantum capacitance, [1] also known as chemical capacitance [2] and electrochemical capacitance ¯, [3] was first theoretically introduced by Serge Luryi (1988), [1] and is defined as the variation of electrical charge with respect to the variation of electrochemical potential ¯, i.e., ¯ = ¯. [3]

  8. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  9. Galvanic cell - Wikipedia

    en.wikipedia.org/wiki/Galvanic_cell

    This view ignored the chemical reactions at the electrode-electrolyte interfaces, which include H 2 formation on the more noble metal in Volta's pile. Although Volta did not understand the operation of the battery or the galvanic cell, these discoveries paved the way for electrical batteries; Volta's cell was named an IEEE Milestone in 1999.