enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  3. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    In classical mechanics, free fall is any motion of a body where gravity is the only force acting upon it. A freely falling object may not necessarily be falling down in the vertical direction . If the common definition of the word "fall" is used, an object moving upwards is not considered to be falling, but using scientific definitions, if it ...

  4. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  5. Free-fall time - Wikipedia

    en.wikipedia.org/wiki/Free-fall_time

    The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant ro

  6. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  7. Holonomic constraints - Wikipedia

    en.wikipedia.org/wiki/Holonomic_constraints

    For example, the motion of a particle constrained to lie on the surface of a sphere is subject to a holonomic constraint, but if the particle is able to fall off the sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case, the holonomic constraint may be given by the equation

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Using the integral form of Gauss's Law, this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any man-scale artifact. The distances between planets and between the planets and the Sun are (by many orders of magnitude) larger than the sizes of the sun and the planets.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    During the Apollo 15 mission in 1971, astronaut David Scott showed that Galileo was right: acceleration is the same for all bodies subject to gravity on the Moon, even for a hammer and a feather. Three main forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.