Search results
Results from the WOW.Com Content Network
Field lines depicting the electric field created by a positive charge (left), negative charge (center), and uncharged object (right). A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length.
Electric charge (symbol q, sometimes Q) is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral.
Electric field lines are useful for visualizing the electric field. Field lines begin on positive charge and terminate on negative charge. They are parallel to the direction of the electric field at each point, and the density of these field lines is a measure of the magnitude of the electric field at any given point.
The concept is also used for the electromagnetic fields, where fluid flow is replaced by field lines. [5] For an electric field, a source is a point where electric field lines emanate, such as a positive charge (>), while a sink is where field lines converge (<), such as a negative charge. [6]
The field is depicted by electric field lines, lines which follow the direction of the electric field in space. The induced charge distribution in the sheet is not shown. The electric field is defined at each point in space as the force that would be experienced by an infinitesimally small stationary test charge at that point divided by the charge.
Electrophoresis is a process that enables the sorting of molecules based on charge, size, or shape. Using an electric field, molecules such as DNA can be made to move through a gel made of agarose or polyacrylamide. The electric field consists of a negative charge at one end which pushes the molecules through the gel and a positive charge at ...
Let ρ denote the number density of electrons, and φ the electric potential. At first, the electrons are evenly distributed so that there is zero net charge at every point. Therefore, φ is initially a constant as well. We now introduce a fixed point charge Q at the origin. The associated charge density is Qδ(r), where δ(r) is the Dirac ...
The electrostatic field (lines with arrows) of a nearby positive charge (+) causes the mobile charges in metal objects to separate. Negative charges (blue) are attracted and move to the surface of the object facing the external charge. Positive charges (red) are repelled and move to the surface facing away. These induced surface charges create ...