Search results
Results from the WOW.Com Content Network
The strong force is described by quantum chromodynamics (QCD), a part of the Standard Model of particle physics. Mathematically, QCD is a non-abelian gauge theory based on a local (gauge) symmetry group called SU(3). The force carrier particle of the strong interaction is the gluon, a massless gauge boson.
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules.
The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...
The induced dipole forces appear from the induction (also termed polarization), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. [12] [13] [14] This interaction is called the Debye force, named after Peter J. W. Debye.
Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...
A chemical bond is an attraction between atoms. This attraction may be seen as the result of different behaviors of the outermost or valence electrons of atoms. These behaviors merge into each other seamlessly in various circumstances, so that there is no clear line to be drawn between them.
In physics, multiple types of material magnetism have been distinguished. Ferromagnetism (along with the similar effect ferrimagnetism) is the strongest type and is responsible for the common phenomenon of everyday magnetism. [1] An example of a permanent magnet formed from a ferromagnetic material is a refrigerator magnet. [2]
Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces. Because of its high cohesion and low adhesion to the glass, mercury does not spread out to cover the bottom of the flask, and if enough is placed in the flask to cover the bottom, it exhibits a strongly convex meniscus, whereas the ...