enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [59] [60] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    The equation of motion for a particle of constant mass m is Newton's second law of 1687, in modern vector notation =, where a is its acceleration and F the resultant force acting on it. Where the mass is varying, the equation needs to be generalised to take the time derivative of the momentum.

  5. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    Then, by taking time derivatives, formulas are derived that relate the velocity of the particle as seen in the two frames, and the acceleration relative to each frame. Using these accelerations, the fictitious forces are identified by comparing Newton's second law as formulated in the two different frames.

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  7. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    To find an acceleration, consider the forces affecting each individual mass. Using Newton's second law (with a sign convention of >) derive a system of equations for the acceleration (a). As a sign convention, assume that a is positive when downward for and upward for .

  8. Newtonian dynamics - Wikipedia

    en.wikipedia.org/wiki/Newtonian_dynamics

    i.e. they take the form of Newton's second law applied to a single particle with the unit mass =.. Definition.The equations are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system.

  9. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    The SI unit of impulse is the newton second (N⋅s), or the Cupp, [1] and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).