enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Duplicate the right triangle to form the isosceles triangle ACP. Construct the circle with center A and radius b, and its tangent h = BH through B. The tangent h forms a right angle with the radius b (Euclid's Elements: Book 3, Proposition 18; or see here), so the yellow triangle in Figure 8 is right.

  5. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The 30°–60°–90° triangle is the only right triangle whose angles are in an arithmetic progression. The proof of this fact is simple and follows on from the fact that if α, α + δ, α + 2δ are the angles in the progression then the sum of the angles 3α + 3δ = 180°. After dividing by 3, the angle α + δ must be 60°. The right angle ...

  6. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem.

  7. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Since OA = OB = OC, OBA and OBC are isosceles triangles, and by the equality of the base angles of an isosceles triangle, ∠ OBC = ∠ OCB and ∠ OBA = ∠ OAB. Let α = ∠ BAO and β = ∠ OBC. The three internal angles of the ∆ABC triangle are α, (α + β), and β. Since the sum of the angles of a triangle is equal to 180°, we have

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    We denote further D = ⁠ c / b ⁠ sin β (the equation's right side). There are four possible cases: If D > 1, no such triangle exists because the side b does not reach line BC. For the same reason a solution does not exist if the angle β ≥ 90° and b ≤ c. If D = 1, a unique solution exists: γ = 90°, i.e., the triangle is right-angled.

  9. Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_Pythagorean_theorem

    This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.