Search results
Results from the WOW.Com Content Network
Few results are known for the general G/G/k model as it generalises the M/G/k queue for which few metrics are known. Bounds can be computed using mean value analysis techniques, adapting results from the M/M/c queue model, using heavy traffic approximations, empirical results [8]: 189 [9] or approximating distributions by phase type distributions and then using matrix analytic methods to solve ...
Through management science, businesses are able to solve a variety of problems using different scientific and mathematical approaches. Queueing analysis is the probabilistic analysis of waiting lines, and thus the results, also referred to as the operating characteristics, are probabilistic rather than deterministic. [5]
More colloquially, a first passage time in a stochastic system, is the time taken for a state variable to reach a certain value. Understanding this metric allows one to further understand the physical system under observation, and as such has been the topic of research in very diverse fields, from economics to ecology. [1]
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process , allowing for dependent matrix-exponential distributed inter-arrival times.
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues.
The response time is the amount of time a job spends in the system from the instant of arrival to the time they leave the system. A consistent and asymptotically normal estimator for the mean response time, can be computed as the fixed point of an empirical Laplace transform.