Search results
Results from the WOW.Com Content Network
Geopotential height differs from geometric height (as given by a tape measure) because Earth's gravity is not constant, varying markedly with altitude and latitude; thus, a 1-m geopotential height difference implies a different vertical distance in physical space: "the unit-mass must be lifted higher at the equator than at the pole, if the same ...
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
the vertical pressure variation, which relates pressure, density and geopotential altitude (using a standard pressure of 101,325 pascals (14.696 psi) at mean sea level as a boundary condition): =, and. the ideal gas law in molar form, which relates pressure, density, and temperature:
The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: H = R T M g 0 {\displaystyle H={\frac {RT}{Mg_{0}}}} where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface.
Geopotential is the potential of the Earth's gravity field. For convenience it is often defined as the negative of the potential energy per unit mass , so that the gravity vector is obtained as the gradient of the geopotential, without the negation.
Since the atmosphere at a height of approximately 5.5 kilometres (3.4 mi) is mostly divergence-free, the barotropic model best approximates the state of the atmosphere at a geopotential height corresponding to that altitude, which corresponds to the atmosphere's 500 mb (15 inHg) pressure surface. [6]
In geophysics and physical geodesy, a geopotential model is the theoretical analysis of measuring and calculating the effects of Earth's gravitational field (the geopotential). The Earth is not exactly spherical, mainly because of its rotation around the polar axis that makes its shape slightly oblate.