Search results
Results from the WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a Lewis base that forms 1:1 adducts with a variety of Lewis acids.
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
3-methyl-1-butanol or isoamyl alcohol or isopentyl alcohol primary 3-Methylbutan-1-ol: 131.2 2,2-dimethyl-1-propanol or neopentyl alcohol primary 2,2-Dimethylpropan-1-ol: 113.1 2-pentanol or sec-amyl alcohol or methyl (n) propyl carbinol secondary Pentan-2-ol: 118.8 3-methyl-2-butanol or sec-isoamyl alcohol or methyl isopropyl carbinol secondary
The Tennessee Eastman acetic anhydride process involves the conversion of methyl acetate to methyl iodide and an acetate salt. Carbonylation of the methyl iodide in turn produces acetyl iodide, which reacts with acetate salts or acetic acid to give the product. Rhodium chloride in the presence of lithium iodide is employed as catalysts. Because ...
Ethyl acetate: 20.72 0.1412 Ethylamine: 10.74 0.08409 Ethylene [2] 4.612 0.0582 Fluorine [2] 1.171 0.0290 Fluorobenzene: 20.19 0.1286 Fluoromethane: 4.692 0.05264 Freon: 10.78 0.0998 Furan [2] 12.74 0.0926 Germanium tetrachloride: 22.90 0.1485 Helium: 0.0346 0.0238 Heptane [2] 31.06 0.2049 1-Heptanol [2] 38.17 0.2150 Hexane: 24.71 0.1735 1 ...
Dimethylacetamide can also be produced by the reaction of dimethylamine with methyl acetate. [6] The separation and purification of the product is carried out by multistage distillation in rectification columns. DMA is obtained with essentially quantitive (99%) yield referred to methyl acetate. [6]