enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The Shannon entropy in information theory is sometimes expressed in units of bits per symbol. The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message (Η) are its total "extensive" information entropy and is ...

  4. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).

  5. Shannon (unit) - Wikipedia

    en.wikipedia.org/wiki/Shannon_(unit)

    A sequence of n binary symbols (such as contained in computer memory or a binary data transmission) is properly described as consisting of n bits, but the information content of those n symbols may be more or less than n shannons depending on the a priori probability of the actual sequence of symbols. [1] The shannon also serves as a unit of ...

  6. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  7. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    is the channel output symbol (is a sequence of symbols) taken in an alphabet ; W ^ {\displaystyle {\hat {W}}} is the estimate of the transmitted message; f n {\displaystyle f_{n}} is the encoding function for a block of length n {\displaystyle n} ;

  8. Information content - Wikipedia

    en.wikipedia.org/wiki/Information_content

    The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.

  9. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    Intuitively, the entropy H X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its distribution is known. The entropy of a source that emits a sequence of N symbols that are independent and identically distributed (iid) is N ⋅ H bits (per message of N symbols).