Search results
Results from the WOW.Com Content Network
In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry. (See Areas of mathematics and Algebraic geometry.)
1135 – Sharafeddin Tusi followed al-Khayyam's application of algebra to geometry, and wrote a treatise on cubic equations which "represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." [2]
The History of Mathematics: A Brief Course. Wiley-Interscience. ISBN 0-471-44459-6. Datta, Bibhutibhushan (1932). The Science of the Sulba. A study in early Hindu geometry. University of Calcutta. Gupta, R.C. (1997). "Baudhāyana". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures ...
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...
János Bolyai; artwork by Attila Zsigmond [1] Memorial plaque of János Bolyai in Olomouc, Czech Republic. János Bolyai (/ ˈ b ɔː l j ɔɪ /; [2] Hungarian: [ˈjaːnoʃ ˈboːjɒi]; 15 December 1802 – 27 January 1860) or Johann Bolyai, [3] was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry.
Boethius provided a place for mathematics in the curriculum in the 6th century when he coined the term quadrivium to describe the study of arithmetic, geometry, astronomy, and music. He wrote De institutione arithmetica , a free translation from the Greek of Nicomachus 's Introduction to Arithmetic ; De institutione musica , also derived from ...
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.