enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry. (See Areas of mathematics and Algebraic geometry.)

  3. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1135 – Sharafeddin Tusi followed al-Khayyam's application of algebra to geometry, and wrote a treatise on cubic equations which "represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." [2]

  4. Shulba Sutras - Wikipedia

    en.wikipedia.org/wiki/Shulba_Sutras

    The History of Mathematics: A Brief Course. Wiley-Interscience. ISBN 0-471-44459-6. Datta, Bibhutibhushan (1932). The Science of the Sulba. A study in early Hindu geometry. University of Calcutta. Gupta, R.C. (1997). "Baudhāyana". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures ...

  5. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]

  6. List of geometers - Wikipedia

    en.wikipedia.org/wiki/List_of_geometers

    Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...

  7. János Bolyai - Wikipedia

    en.wikipedia.org/wiki/János_Bolyai

    János Bolyai; artwork by Attila Zsigmond [1] Memorial plaque of János Bolyai in Olomouc, Czech Republic. János Bolyai (/ ˈ b ɔː l j ɔɪ /; [2] Hungarian: [ˈjaːnoʃ ˈboːjɒi]; 15 December 1802 – 27 January 1860) or Johann Bolyai, [3] was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry.

  8. History of mathematics - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematics

    Boethius provided a place for mathematics in the curriculum in the 6th century when he coined the term quadrivium to describe the study of arithmetic, geometry, astronomy, and music. He wrote De institutione arithmetica , a free translation from the Greek of Nicomachus 's Introduction to Arithmetic ; De institutione musica , also derived from ...

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.