Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
cosmological constant: 1.089(29) × 10 −52 m −2 [c] 1.088(30) × 10 −52 m −2 [d] 0.027 0.028 [7] [8] = / Stefan–Boltzmann constant: 5.670 374 419... × 10 −8 W⋅m −2 ⋅K −4: 0 [9] = first radiation constant: 3.741 771 852... × 10 −16 W⋅m 2: 0 [10]
siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar ...
Most notably, in a 1929 paper he set out an argument based on the Pauli exclusion principle and the Dirac equation that fixed the value of the reciprocal of the fine-structure constant as 𝛼 −1 = 16 + 1 / 2 × 16 × (16–1) = 136. When its value was discovered to be closer to 137, he changed his argument to match that value.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The resulting system of units is known as the natural units, specifically regarding these five constants, Planck units. However, not all physical constants can be normalized in this fashion. For example, the values of the following constants are independent of the system of units, cannot be defined, and can only be determined experimentally: [22]
In low-dimensional topology, Catalan's constant is 1/4 of the volume of an ideal hyperbolic octahedron, and therefore 1/4 of the hyperbolic volume of the complement of the Whitehead link. [4] It is 1/8 of the volume of the complement of the Borromean rings. [5]