Search results
Results from the WOW.Com Content Network
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. [1] [2] A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress).
In 2014, Artur Avila won a Fields Medal for work including the solution of three Simon problems. [5] [6] Among these was the problem of proving that the set of energy levels of one particular abstract quantum system was, in fact, the Cantor set, a challenge known as the "Ten Martini Problem" after the reward that Mark Kac offered for solving it ...
If a third mass is added, the Kepler problem becomes the three-body problem, which in general has no exact solution in closed form. That is, there is no way to start from the differential equations implied by Newton's laws and, after a finite sequence of standard mathematical operations, obtain equations that express the three bodies' motions ...
The external body forces appear as the independent ("right-hand side") term in the differential equations, while the concentrated forces appear as boundary conditions. The basic stress analysis problem is therefore a boundary-value problem. Stress analysis for elastic structures is based on the theory of elasticity and infinitesimal strain theory.
A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise.
The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.