Search results
Results from the WOW.Com Content Network
The fluctuations at temperature T c are scale-invariant, and so the Ising model at this phase transition is expected to be described by a scale-invariant statistical field theory. In fact, this theory is the Wilson–Fisher fixed point , a particular scale-invariant scalar field theory .
Alternative methods for scale-invariant object recognition under clutter / partial occlusion include the following. RIFT [38] is a rotation-invariant generalization of SIFT. The RIFT descriptor is constructed using circular normalized patches divided into concentric rings of equal width and within each ring a gradient orientation histogram is ...
Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...
Using tools from information geometry, the Jeffreys prior can be generalized in pursuit of obtaining priors that encode geometric information of the statistical model, so as to be invariant under a change of the coordinate of parameters. [9] A special case, the so-called Weyl prior, is defined as a volume form on a Weyl manifold. [10]
Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is ...
This property of () follows directly from the requirement that () be asymptotically scale invariant; thus, the form of () only controls the shape and finite extent of the lower tail. For instance, if L ( x ) {\displaystyle L(x)} is the constant function, then we have a power law that holds for all values of x {\displaystyle x} .
In short, total least squares does not have the property of units-invariance—i.e. it is not scale invariant. For a meaningful model we require this property to hold. A way forward is to realise that residuals (distances) measured in different units can be combined if multiplication is used instead of addition.
In particular it needs to be invariant to translation, scaling, small perturbations, and, depending on the application, rotation. Translational invariance comes naturally to shape context. Scale invariance is obtained by normalizing all radial distances by the mean distance α {\displaystyle \alpha } between all the point pairs in the shape [ 2 ...