Search results
Results from the WOW.Com Content Network
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
Similarly, Nyquist's name was attached to Nyquist rate in 1953 by Harold S. Black: If the essential frequency range is limited to B {\displaystyle B} cycles per second, 2 B {\displaystyle 2B} was given by Nyquist as the maximum number of code elements per second that could be unambiguously resolved, assuming the peak interference is less than ...
When a bandpass signal is sampled slower than its Nyquist rate, the samples are indistinguishable from samples of a low-frequency alias of the high-frequency signal. That is often done purposefully in such a way that the lowest-frequency alias satisfies the Nyquist criterion, because the bandpass signal is still uniquely represented and ...
where is the pulse frequency (in pulses per second) and is the bandwidth (in hertz). The quantity later came to be called the Nyquist rate, and transmitting at the limiting pulse rate of pulses per second as signalling at the Nyquist rate. Nyquist published his results in 1928 as part of his paper "Certain topics in Telegraph Transmission Theory".
The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
Important signals of this sort include a radio's intermediate-frequency (IF), radio-frequency (RF) signal, and the individual channels of a filter bank. If n > 1, then the conditions result in what is sometimes referred to as undersampling, bandpass sampling, or using a sampling rate less than the Nyquist rate (2f H). For the case of a given ...