Search results
Results from the WOW.Com Content Network
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
Thus, if one wants Z to be an actual element of the Lie algebra containing X and Y (as opposed to a formal power series), one has to assume that X and Y are small. Thus, the conclusion that the product operation on a Lie group is determined by the Lie algebra is only a local statement.
The first four partial sums of the series 1 ... 3 − 4 + ⋯ is the formal power series ... the Euler–Maclaurin formula for the partial sums of a series.
The Hilbert–Poincaré series is a formal power series used to study graded algebras. Even if the limit of the power series is not considered, if the terms support appropriate structure then it is possible to define operations such as addition , multiplication , derivative , antiderivative for power series "formally", treating the symbol ...
In mathematics, a formal group law is (roughly speaking) a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner ( 1946 ). The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations.