Search results
Results from the WOW.Com Content Network
Le Chatelier's principle. In chemistry, Le Chatelier's principle (pronounced UK: / lə ʃæˈtɛljeɪ / or US: / ˈʃɑːtəljeɪ /), also called Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium law, [1] is a principle used to predict the effect of a change in conditions on chemical ...
Henry Louis Le Chatelier[1] (French pronunciation: [ɑ̃ʁi lwi lə ʃɑtəlje]; 8 October 1850 – 17 September 1936) was a French chemist of the late 19th and early 20th centuries. He devised Le Chatelier's principle, used by chemists and chemical engineers to predict the effect a changing condition has on a system in chemical equilibrium.
Chemistry. In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. [1]
When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H +) are added, and the equilibrium is shifted to the left, in accordance with Le Chatelier's principle. Because of this, the hydrogen ion concentration increases by less than the amount expected for the quantity of strong acid added.
In the blood of most animals, the bicarbonate buffer system is coupled to the lungs via respiratory compensation, the process by which the rate and/or depth of breathing changes to compensate for changes in the blood concentration of CO 2. [10] By Le Chatelier's principle, the release of CO 2 from the lungs pushes the reaction above to the left ...
Common-ion effect. In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation.
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.
Law of mass action. In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium. Specifically, it implies that for a chemical reaction mixture ...