Search results
Results from the WOW.Com Content Network
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2]
In computer science, a trie (/ ˈ t r aɪ /, / ˈ t r iː /), also known as a digital tree or prefix tree, [1] is a specialized search tree data structure used to store and retrieve strings from a dictionary or set. Unlike a binary search tree, nodes in a trie do not store their associated key.
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A tree whose root node has two subtrees, both of which are full binary trees. A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full ...
Unlike splay trees and tango trees, Iacono's data structure is not known to be implementable in constant time per access sequence step, so even if it is dynamically optimal, it could still be slower than other search tree data structures by a non-constant factor. The interleave lower bound is an asymptotic lower bound on dynamic optimality.
Btrfs is structured as several layers of such trees, all using the same B-tree implementation. The trees store generic items sorted by a 136-bit key. The most significant 64 bits of the key are a unique object id. The middle eight bits are an item type field: its use is hardwired into code as an item filter in tree lookups.