Search results
Results from the WOW.Com Content Network
Hence the rate of Hamming codes is R = k / n = 1 − r / (2 r − 1), which is the highest possible for codes with minimum distance of three (i.e., the minimal number of bit changes needed to go from any code word to any other code word is three) and block length 2 r − 1.
In coding theory, Hamming(7,4) is a linear error-correcting code that encodes four bits of data into seven bits by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code often refers to this specific code that Richard W. Hamming introduced in 1950.
The Hamming graph H(d,q) has vertex set S d, the set of ordered d-tuples of elements of S, or sequences of length d from S. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph H(d,q) is, equivalently, the Cartesian product of d complete graphs K q. [1]
In coding theory, if Q has q elements, then any subset C (usually assumed of cardinality at least two) of the N-dimensional Hamming space over Q is called a q-ary code of length N; the elements of C are called codewords. [4] [5] In the case where C is a linear subspace of its Hamming space, it is called a linear code. [4]
The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. [ 5 ] FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast .
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Hamming code;
The Hamming scheme, named after Richard Hamming, is also known as the hyper-cubic association scheme, and it is the most important example for coding theory. [1] [2] [3] In this scheme =, the set of binary vectors of length , and two vectors , are -th associates if they are Hamming distance apart.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...