Search results
Results from the WOW.Com Content Network
The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).
Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform ...
The following table provides Laplace transforms for many common functions of a single variable. [31] [32] For definitions and explanations, see the Explanatory Notes at the end of the table. Because the Laplace transform is a linear operator, The Laplace transform of a sum is the sum of Laplace transforms of each term.
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikiversity; Wikidata item; Appearance. ... Pages in category "Laplace transforms"
Download QR code; Print/export Download as PDF; Printable version; In other projects ... Sumudu transform is 1/u Laplace transform [()] () ...
The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by
In mathematics, transform theory is the study of transforms, which relate a function in one domain to another function in a second domain. The essence of transform theory is that by a suitable choice of basis for a vector space a problem may be simplified—or diagonalized as in spectral theory .