enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.

  3. The Story of Maths - Wikipedia

    en.wikipedia.org/wiki/The_Story_of_Maths

    Galois had discovered new techniques to tell whether certain equations could have solutions or not. The symmetry of certain geometric objects was the key. Galois' work was picked up by André Weil who built algebraic geometry, a whole new language. Weil's work connected number theory, algebra, topology and geometry.

  4. Riemann surface - Wikipedia

    en.wikipedia.org/wiki/Riemann_surface

    There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...

  5. Category:Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Algebraic_geometry

    Algebraic geometry is the place where the algebra involved in solving systems of simultaneous multivariable polynomial equations meets the geometry of curves, surfaces, and higher dimensional algebraic varieties.

  6. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Algebraic geometry became an autonomous subfield of geometry c. 1900, with a theorem called Hilbert's Nullstellensatz that establishes a strong correspondence between algebraic sets and ideals of polynomial rings. This led to a parallel development of algebraic geometry, and its algebraic counterpart, called commutative algebra. [106]

  7. List of algebraic geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_algebraic_geometry...

    Algebraic variety. Hypersurface; Quadric (algebraic geometry) Dimension of an algebraic variety; Hilbert's Nullstellensatz; Complete variety; Elimination theory; Gröbner basis; Projective variety; Quasiprojective variety; Canonical bundle; Complete intersection; Serre duality; Spaltenstein variety; Arithmetic genus, geometric genus, irregularity

  8. History of manifolds and varieties - Wikipedia

    en.wikipedia.org/wiki/History_of_manifolds_and...

    The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they may behave like groups, for instance. In that case, they are called Lie Groups.

  9. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).