enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1] The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent ...

  3. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    where , are the coordinates of a point on the cross section at which the stress is to be determined as shown to the right, and are the bending moments about the y and z centroid axes, and are the second moments of area (distinct from moments of inertia) about the y and z axes, and is the product of moments of area. Using this equation it is ...

  5. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both , a material property, and , the physical geometry of the beam. If the material exhibits Isotropic behavior ...

  6. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...

  7. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The bending moment at a particular cross section varies linearly with the second derivative of the deflected shape at that location. The beam is composed of an isotropic material. The applied load is orthogonal to the beam's neutral axis and acts in a unique plane.

  9. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.