Search results
Results from the WOW.Com Content Network
To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.
The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.
Absolute electrode potential, ... This near-agreement in the numerical value depends on the choice of ambient temperature and standard states, and is the result of ...
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage. When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red
Potentiometry usually uses indicator electrodes made selectively sensitive to the ion of interest, such as fluoride in fluoride selective electrodes, so that the potential solely depends on the activity of this ion of interest. The time that takes the electrode to establish equilibrium with the solution will affect the sensitivity or accuracy ...
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...