enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    As the reaction progresses, the reaction can change from second order to first order as reactant is consumed. Another type of mixed-order rate law has a denominator of two or more terms, often because the identity of the rate-determining step depends on the values of the concentrations.

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    This reaction is found to be first-order with r = k[R−Br], which indicates that the first step is slow and determines the rate. The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH

  4. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    The hypothesis that reaction rate is proportional to reactant concentrations is, strictly speaking, only true for elementary reactions (reactions with a single mechanistic step), but the empirical rate expression = [] [] is also applicable to second order reactions that may not be concerted reactions. Guldberg and Waage were fortunate in that ...

  5. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  6. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...

  7. Thiele modulus - Wikipedia

    en.wikipedia.org/wiki/Thiele_modulus

    Then the Thiele modulus for a first order reaction is: = From this relation it is evident that with large values of , the rate term dominates and the reaction is fast, while slow diffusion limits the overall rate. Smaller values of the Thiele modulus represent slow reactions with fast diffusion.

  8. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    For a unimolecular reaction or step, the rate is proportional to the concentration of molecules of reactant, so the rate law is first order. For a bimolecular reaction or step, the number of collisions is proportional to the product of the two reactant concentrations, or second order. A termolecular step is predicted to be third order, but also ...

  9. Pre-exponential factor - Wikipedia

    en.wikipedia.org/wiki/Pre-exponential_factor

    For a first-order reaction, it has units of s −1. For that reason, it is often called frequency factor . According to collision theory , the frequency factor, A, depends on how often molecules collide when all concentrations are 1 mol/L and on whether the molecules are properly oriented when they collide.