Search results
Results from the WOW.Com Content Network
Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid.
In materials science, liquefaction [1] is a process that generates a liquid from a solid or a gas [2] or that generates a non-liquid phase which behaves in accordance with fluid dynamics. [3] It occurs both naturally and artificially. As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to ...
Triaxial apparatus with sample attached ready for testing. In materials science, a triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders.
There is one type of landslide that is essential uniquely limited to earthquakes - liquefaction failure, which can cause fissuring or subsidence of the ground. Liquefaction involves the temporary loss of strength of sands and silts which behave as viscous fluids rather than as soils. This can have devastating effects during large earthquakes.
The term ground failure is a general reference to landslides, liquefaction, lateral spreads, and any other consequence of shaking that affects the stability of the ground. This usually takes place as an after-effect of an earthquake , and is one of the major causes of destruction after an earthquake.
Both surface deformation and faulting and shaking-related geological effects (e.g., soil liquefaction, landslides) not only leave permanent imprints in the environment, but also dramatically affect human structures. Moreover, underwater fault ruptures and seismically triggered landslides can generate tsunami waves.
soil composition (basic soil material): mineralogy, grain size and grain size distribution, shape of particles, pore fluid type and content, ions on grain and in pore fluid. state (initial): Defined by the initial void ratio, effective normal stress and shear stress (stress history). State can be describd by terms such as: loose, dense ...
Use of SPT data for direct prediction of liquefaction potential suffers from roughness of correlations and from the need to "normalize" SPT data to account for overburden pressure, sampling technique, and other factors. [4] Additionally, the method cannot collect accurate data for weak soil layers for several reasons: