enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...

  3. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    The downward curve after saturation, along with the lower return curve, form the main loop. The intercepts h c and m rs are the coercivity and saturation remanence. Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it.

  4. Bang–bang control - Wikipedia

    en.wikipedia.org/wiki/Bang–bang_control

    In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either ...

  5. Ferromagnetic material properties - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetic_material...

    Hysteresis loop Induction B as function of field strength H for H varying between H min and H max; for ferromagnetic material the B has different values for H going up and down, therefore a plot of the function forms a loop instead of a curve joining two points; for perminvar type materials, the loop is a "rectangle" (Domain Structure of Perminvar Having a Rectangular Hysteresis Loop, Williams ...

  6. Stoner–Wohlfarth model - Wikipedia

    en.wikipedia.org/wiki/Stoner–Wohlfarth_model

    Usually only the hysteresis loop is plotted; the energy maxima are only of interest if the effect of thermal fluctuations is calculated. [1] The Stoner–Wohlfarth model is a classic example of magnetic hysteresis. The loop is symmetric (by a 180 ° rotation) about the origin and jumps occur at h = ± h s, where h s is known as the switching field.

  7. Schmitt trigger - Wikipedia

    en.wikipedia.org/wiki/Schmitt_trigger

    B < 1 is the feedback transfer function. Circuits with hysteresis are based on positive feedback. Any active circuit can be made to behave as a Schmitt trigger by applying positive feedback so that the loop gain is more than one. The positive feedback is introduced by adding a part of the output voltage to the input voltage.

  8. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]

  9. Coercivity - Wikipedia

    en.wikipedia.org/wiki/Coercivity

    A family of hysteresis loops for grain-oriented electrical steel, a soft magnetic material. B R denotes retentivity and H C is the coercivity. The wider the outside loop is, the higher the coercivity. Movement on the loops is counterclockwise.