enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  3. Table of mathematical symbols by introduction date - Wikipedia

    en.wikipedia.org/wiki/Table_of_mathematical...

    The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial of is , or in symbols, ! =. There are several motivations for this definition: For n = 0 {\displaystyle n=0} , the definition of n ! {\displaystyle n!} as a product involves the product of no numbers at all, and so is an example of the broader convention that the empty product , a product of no factors, is equal to the ...

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.

  6. Mathematical markup language - Wikipedia

    en.wikipedia.org/wiki/Mathematical_markup_language

    A mathematical markup language is a computer notation for representing mathematical formulae, based on mathematical notation. Specialized markup languages are necessary because computers normally deal with linear text and more limited character sets (although increasing support for Unicode is obsoleting very simple uses).

  7. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  8. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    These symbols were originally devised as a mathematical notation to describe algorithms. [1] APL programmers often assign informal names when discussing functions and operators (for example, "product" for ×/) but the core functions and operators provided by the language are denoted by non-textual symbols.

  9. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.