enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    For this reason, the blood flow velocity is the fastest in the middle of the vessel and slowest at the vessel wall. In most cases, the mean velocity is used. [18] There are many ways to measure blood flow velocity, like videocapillary microscoping with frame-to-frame analysis, or laser Doppler anemometry. [19]

  3. Arteriole - Wikipedia

    en.wikipedia.org/wiki/Arteriole

    The up and down fluctuation of the arterial blood pressure is due to the pulsatile nature of the cardiac output and determined by the interaction of the stroke volume versus the volume and elasticity of the major arteries. The decreased velocity of flow in the capillaries increases the blood pressure, due to Bernoulli's principle.

  4. Photoacoustic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Photoacoustic_Doppler_effect

    This is related to an important problem in medicine: the measurement of blood flow through arteries, capillaries, and veins. [3] Measuring blood velocity in capillaries is an important component to clinically determining how much oxygen is delivered to tissues and is potentially important to the diagnosis of a variety of diseases including ...

  5. Surface chemistry of microvasculature - Wikipedia

    en.wikipedia.org/wiki/Surface_chemistry_of...

    Changes in temperature affect the viscosity and surface tension of the blood, altering the minimum blood flow rate. At high temperatures the minimum flow rate will decrease and the capillary will expand. This allows heat transfer through the increased surface area of the inner capillary lining and through increased blood flow.

  6. Hemodynamics of the aorta - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics_of_the_Aorta

    As the blood moves into the aortic arch, the area with the highest velocity tends to be on the inner wall. Helical flow within the ascending aorta and aortic arch help to reduce flow stagnation and increase oxygen transport. [4] As the blood moves into the descending aorta, rotations in the flow are less present.

  7. Blood vessel - Wikipedia

    en.wikipedia.org/wiki/Blood_vessel

    The circulatory system uses the channel of blood vessels to deliver blood to all parts of the body. This is a result of the left and right sides of the heart working together to allow blood to flow continuously to the lungs and other parts of the body. Oxygen-poor blood enters the right side of the heart through two large veins.

  8. Capillary - Wikipedia

    en.wikipedia.org/wiki/Capillary

    A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the innermost layer of an artery or vein), consisting of a thin wall of simple squamous endothelial cells. [2]

  9. Hemorheology - Wikipedia

    en.wikipedia.org/wiki/Hemorheology

    Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.