Search results
Results from the WOW.Com Content Network
While terrestrial animals often have a uniform method of producing and detecting sounds, aquatic animals have a range of mechanisms to produce and detect both vocal and non-vocal sounds. [7] In terms of sound production, fish can produce sounds such as boat-whistles, grunts and croaks using their swim bladder or pectoral fin.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
Certain words in the English language represent animal sounds: the noises and vocalizations of particular animals, especially noises used by animals for communication. The words can be used as verbs or interjections in addition to nouns , and many of them are also specifically onomatopoeic .
Whales use a variety of sounds for communication and sensation. [1] The mechanisms used to produce sound vary from one family of cetaceans to another. Marine mammals, including whales, dolphins, and porpoises, are much more dependent on sound than land mammals due to the limited effectiveness of other senses in water.
Bats are extreme when it comes to sound production and have a greater vocal range than singers like Mariah Carey and Prince, a new study suggests. Many animals produce sound to communicate with ...
However, sound propagates readily through water and across considerable distances. Many marine animals can see well, but using hearing for communication, and sensing distance and location. Gauging the relative importance of audition versus vision in animals can be performed by comparing the number of auditory and optic nerves.
Electroreceptive animals use the sense to locate objects around them. This is important in ecological niches where the animal cannot depend on vision: for example in caves, in murky water, and at night. Electrolocation can be passive, sensing electric fields such as those generated by the muscle movements of buried prey, or active, the ...
The term echolocation was coined by 1944 by the American zoologist Donald Griffin, who, with Robert Galambos, first demonstrated the phenomenon in bats. [1] [2] As Griffin described in his book, [3] the 18th century Italian scientist Lazzaro Spallanzani had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did ...