enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    Work and heat express physical processes of supply or removal of energy, while the internal energy is a mathematical abstraction that keeps account of the changes of energy that befall the system. The term Q {\displaystyle Q} is the quantity of energy added or removed as heat in the thermodynamic sense, not referring to a form of energy within ...

  3. Vis viva - Wikipedia

    en.wikipedia.org/wiki/Vis_viva

    Vis viva (from the Latin for "living force") is a historical term used to describe a quantity similar to kinetic energy in an early formulation of the principle of conservation of energy. Overview [ edit ]

  4. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of massenergy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  6. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The first law specifies that energy can be transferred between physical systems as heat, as work, and with transfer of matter. [5] The second law defines the existence of a quantity called entropy , that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to ...

  7. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the energy added to the system per gas particle kinetic degree of freedom is =. Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas ( D = 3) is K = D 2 k B N A = 3 2 R , {\displaystyle K={\frac {D}{2}}k_{\text{B}}N_{\text{A}}={\frac {3}{2}}R,} where N A {\displaystyle N_{\text{A}}} is the Avogadro constant , and R ...

  8. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  9. Invariant mass - Wikipedia

    en.wikipedia.org/wiki/Invariant_mass

    Rest energy (also called rest mass energy) is the energy associated with a particle's invariant mass. [2] [3] The rest energy of a particle is defined as: =, where is the speed of light in vacuum. [2] [3] [4] In general, only differences in energy have physical significance. [5]