enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    The original notation employed by Gottfried Leibniz is used throughout mathematics. It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x.

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition), S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7.

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  7. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an ...

  8. Third derivative - Wikipedia

    en.wikipedia.org/wiki/Third_derivative

    In calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function y = f ( x ) {\displaystyle y=f(x)} can be denoted by

  9. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using derivatives. If y is a function of x, then the differential dy of y is related to dx by the formula =, where dy/dx denotes the derivative of y with respect to x.