enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]

  3. Indeterminate system - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_system

    For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement.

  5. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.

  6. Underdetermined system - Wikipedia

    en.wikipedia.org/wiki/Underdetermined_system

    Each unknown can be seen as an available degree of freedom. Each equation introduced into the system can be viewed as a constraint that restricts one degree of freedom. Therefore, the critical case (between overdetermined and underdetermined) occurs when the number of equations and the number of free variables are equal.

  7. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    We have the following possible cases for an overdetermined system with N unknowns and M equations (M>N). M = N+1 and all M equations are linearly independent. This case yields no solution. Example: x = 1, x = 2. M > N but only K equations (K < M and K ≤ N+1) are linearly independent. There exist three possible sub-cases of this:

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown. Repeat steps 1 and 2 until the system is reduced to a single linear equation. Solve this equation, and then back-substitute until the entire solution is found. For example, consider the following system:

  9. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    In mathematics, a linear equation is an equation that may be put in the form + … + + =, where , …, are the variables (or unknowns), and ,, …, are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation and may be arbitrary expressions , provided they do not contain any of the variables.