Search results
Results from the WOW.Com Content Network
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1] In the table below, the label "Undefined" represents a ratio :
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
A significant improvement is to use the following modification to the above, a trick (due to Singleton [2]) often used to generate trigonometric values for FFT implementations: c 0 = 1 s 0 = 0 c n+1 = c n − (α c n + β s n) s n+1 = s n + (β c n − α s n) where α = 2 sin 2 (π/N) and β = sin(2π/N).
Sin(θ), Tan(θ), and 1 are the heights to the line starting from the x-axis, while Cos(θ), 1, and Cot(θ) are lengths along the x-axis starting from the origin. If the acute angle θ is given, then any right triangles that have an angle of θ are similar to each other. This means that the ratio of any two side lengths depends only on θ.
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
The formulas for addition and subtraction involving a small angle may be used for interpolating between trigonometric table values: Example: sin(0.755) = (+) + () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given.
Abu al-Wafa had sine tables in 0.25° increments, to 8 decimal places of accuracy, and accurate tables of tangent values. [16] He also made important innovations in spherical trigonometry [17] [18] [19] The Persian polymath Nasir al-Din al-Tusi has been described as the creator of trigonometry as a mathematical discipline in its own right.
The part of the graph of sin x in the range from 0° to 180° "looks like" part of a parabola through the points (0, 0) and (180, 0). The general form of such a parabola is (). The parabola that also passes through (90, 1) (which is the point corresponding to the value sin(90°) = 1) is