Search results
Results from the WOW.Com Content Network
This makes them suitable to handle any type of uncertainty, i.e., both systematic and random contributions to the total uncertainty. [7] [8] [9] Random-fuzzy variable (RFV) is a type 2 fuzzy variable, [10] defined using the mathematical possibility theory, [5] [6] used to represent the entire information associated to a measurement result. It ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational acceleration of 9.8 m/s² ignores the effects of air resistance, but the air resistance for the object could be measured and incorporated into the experiment to ...
Quantitative uses of the terms uncertainty and risk are fairly consistent among fields such as probability theory, actuarial science, and information theory. Some also create new terms without substantially changing the definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in information theory ...
Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, [1] Laplace, de Finetti, [2] Ramsey, Cox, Lindley, and many others.However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probability theory is required, because one may not always be able to provide ...
Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.