Search results
Results from the WOW.Com Content Network
According to ISO 5725-1, accuracy consists of trueness (proximity of the mean of measurement results to the true value) and precision (repeatability or reproducibility of the measurement). While precision is a description of random errors (a measure of statistical variability ), accuracy has two different definitions:
A precision-recall curve plots precision as a function of recall; usually precision will decrease as the recall increases. Alternatively, values for one measure can be compared for a fixed level at the other measure (e.g. precision at a recall level of 0.75) or both are combined into a single measure.
The measure precision at k, for example, is a measure of precision looking only at the top ten (k=10) search results. More sophisticated metrics, such as discounted cumulative gain , take into account each individual ranking, and are more commonly used where this is important.
False precision (also called overprecision, fake precision, misplaced precision and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.
Hoping to reflect the way in which the term "accuracy" is actually used in the scientific community, there is a recent standard, ISO 5725, which keeps the same definition of precision but defines the term "trueness" as the closeness of a given measurement to its true value and uses the term "accuracy" as the combination of trueness and ...
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties
Even though the accuracy is 10 + 999000 / 1000000 ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of 10 / 10 + 990 = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = 2 × 0.01 × 1 / 0.01 + 1 ≈ 2% (the recall being 10 + 0 / 10 ...